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ABSTRACT
In this paper I show that simulations of reionization performed under the Cosmic Reionization On Computers

(CROC) project do converge in space and mass, albeit rather slowly. A fully converged solution (for a given
star formation and feedback model) can be determined at a level of precision of about 20%, but such a solution
is useless in practice, since achieving it in production-grade simulations would require a large set of runs at
various mass and spatial resolutions, and computational resources for such an undertaking are not yet readily
available.

In order to make progress in the interim, I introduce a weak convergence correction factor in the star forma-
tion recipe, which allows one to approximate the fully converged solution with finite resolution simulations.
The accuracy of weakly converged simulations approaches a comparable, ∼ 20% level of precision for star
formation histories of individual galactic halos and other galactic properties that are directly related to star
formation rates, like stellar masses and metallicities. Yet other properties of model galaxies, for example, their
HI masses, are recovered in the weakly converged runs only within a factor of two.
Subject headings: cosmology: theory – cosmology: large-scale structure of universe – galaxies: formation –

galaxies: intergalactic medium – methods: numerical

1. INTRODUCTION

As the study of cosmic reionization enters a (nothing short
of a true) Renaissance, with numerous observational probes
(from JWST and 30-meter class telescopes to 21 cm experi-
ments) just about to increase the volume and quality of obser-
vational data hundreds-fold, the demand on theory to remain
on par with the forthcoming data forces a careful reexamina-
tion of the accuracy of the current theoretical modeling.

At present, numerical simulations offer the most accurate
and realistic theoretical models of reionization. Hence, evalu-
ating the precision of modern simulations is an important and
timely theoretical task, while we are all eagerly waiting for
the flood of new data.

Results from computer simulations can be considered as
solutions to actual physical equations only if they are numeri-
cally converged. In practice, however, it is often exceptionally
difficult or even plainly impossible to reach what the EAGLE
team (Schaye et al. 2015) termed ”strong” convergence - i.e.,
the effective independence of simulation results of spatial and
mass resolution (c.f. Springel & Hernquist 2003; Naab et al.
2007; Springel et al. 2008; Mayer et al. 2008; Schaye et al.
2010a; Vogelsberger et al. 2014; Schaye et al. 2015, for an in-
complete list). Without a proper convergence study however,
the results from a numerical simulation may remain suspi-
cious to be simply numerical artifacts.

In galaxy formation modeling the situation is exacerbated
by the fact that we can never formulate the problem to solve as
a system of basic physical equations, and always have to rely
on subgrid models for star formation and feedback. Any such
model is necessarily scale-dependent, so a strong convergence
limit may not exist or be physically meaningless (see Schaye
et al. 2015, for a more elaborated discussion).
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A practical, although not necessarily mathematically rigor-
ous solution to this dilemma is to seek ”weak” convergence4,
i.e. reduced dependence of the simulation results on spatial
and mass resolution, when the actual numerical model to
be simulated is adjusted as the resolution changes. This is
precisely the goal I have in this paper: sufficiently accurate
weakly converged simulations will serve as a robust theoret-
ical model for the interpretation of the future observational
data, and as the diversity, quality and volume of the data in-
crease, the weakly converged numerical models are likely to
improve further with the continuing effort.

In order to present the subject rigorously, I start with the dis-
cussion of strong and weak convergence in §2. As I have men-
tioned above, the actual terminology has been introduced by
Schaye et al. (2015), so this presentation is not original, but it
serves as a useful basis for the further exposition. In §3 I enu-
merate original simulations used in this paper. All of the exist-
ing simulation work is united under a single project, Cosmic
Reionization On Computers (CROC), that has been described
in Gnedin (2014). Section 4 presents both my methodology
and its application to achieving numerical convergence in the
global star formation history of the universe for CROC simu-
lations. Finally, §5 describes the weakly converged numerical
models that will serve as a physical basis for the next install-
ment of CROC simulations.

2. NUMERICAL AND PHYSICAL CONVERGENCE

2.1. Strong and Weak Numerical Convergence
Generically, any physical quantity extracted from a simula-

tion needs to be tested for numerical convergence - a value far
from convergence is meaningless, as it is dominated by nu-
merical truncation errors. In the specific case of cosmological
simulations, the two most crucial numerical parameters are
spatial and mass resolution. The former is often fixed in ei-
ther comoving or physical coordinates. In this paper I primar-
ily consider simulations whose spatial resolution ∆r is fixed

4 I am again following the Schaye et al. (2015) terminology here.
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in physical coordinates, and the details of the implementation
of the fixed physical resolution in the ART code are presented
in the Appendix (§A).

The mass resolution is convenient to parametrize by a quan-
tity M1, which is equal to the particle mass in a pure N-body
simulation with the same number of particles, i.e

M1 ≡
ΩM

ΩM −ΩB
MDM,

where MDM is the dark matter particle mass in the simulation.
For example, a simulation with 20h−1 Mpc box size and 10243

particles would have M1 = 9.2×105M� for our adopted values
of cosmological parameters (ΩM = 0.3036, ΩB = 0.0479,
h = 0.6814 in a flat ΛCDM cosmological model).

In principle, the third important numerical parameter is
the dynamic range of initial conditions. For example, one
could imagine a simulation with 10243 particles but with ini-
tial conditions set up on a 5123 grid. In practice, however,
overwhelming majority of all numerical studies in cosmology
would use initial conditions on a 10243 grid for a 10243 par-
ticle simulation, and all CROC simulations are set the same
way too. Hence, the parameter M1 quantifies not only the
mass resolution of the simulation, but also the dynamic range
of initial conditions.

Hence, any physical quantity Q extracted from the simu-
lation (it can be literally anything, from a very local property
like the density value in a given location to a global value, like
the average star formation rate density) can be considered to
be a function of numerical parameters,

Q = Q(∆r,M1).

If the cosmological simulations were produced from the “first
principles”, that would be the complete dependence. How-
ever, while many physical processes are modeled from the
first principles in CROC simulations, star formation and stel-
lar feedback are followed with phenomenological models;
different star formation models5 may result in different sim-
ulation predictions, and, hence, simulated quantities also de-
pend on the physical model (I label it P) and its parameters
p j,

Q = Q(∆r,M1| P, p j). (1)

Ideally, the fully numerically converged value Q̂ would be
obtained as a limit of Equation (1) for infinitely fine spatial
and mass resolution, but with physical model parameter fixed,

Q̂ = lim
∆r,M1→0

Q(∆r,M1| P, p j), (2)

where hereafter I use a hat symbol ˆ to label a numerically
converged result (notice, that so far it is not specified how the
double limit is actually taken; I will discuss this later). Such a
limit is commonly called “strong convergence” after Schaye
et al. (2015), in a sense that a physical model is fully indepen-
dent of numerical resolution. Alas, as was mentioned in the
Introduction and discussed by Schaye et al. (2015), in prac-
tice this is rarely achievable or useful, as phenomenological
models typically are only valid for a finite range of spatial
and mass scales. I.e., even if the limit of Equation (2) exists,
it may make little physical sense, as the physical model P

5 Hereafter, for the sake of brevity, I will use the term “star formation
model” to mean both the star formation recipe and the model for the stellar
feedback.

would not be valid for very small ∆r. For example, an em-
pirical linear Kennicutt-Schmidt relation used as a star forma-
tion recipe for CROC simulations is known to work well on
scales of several hundred parsecs (Leroy et al. 2008; Bigiel
et al. 2008; Genzel et al. 2010; Daddi et al. 2010; Bolatto
et al. 2011; Bigiel et al. 2011; Leroy et al. 2012, 2013; Tacconi
et al. 2013), but fails or changes on scales of tens of parsecs
(Onodera et al. 2010; Shetty et al. 2014; Evans et al. 2014;
Casasola et al. 2015).

An alternative to strong convergence is “weak conver-
gence”, when parameters of the physical model are adjusted
as the resolution increases,

Q̂ = lim
∆r,M1→0

Q(∆r,M1| P, p j = fJ(∆r,M1)). (3)

Weak convergence is less appealing, as the physical model is
“tweaked” each time resolution changes, but the ultimate test
is whether the converged values of parameters,

p̂ j = lim
∆r,M1→0

fJ(∆r,M1),

are physically meaningful. If they are, then there is noth-
ing wrong with weak convergence. In fact, the EAGLE team
(Schaye et al. 2015) argued that weak convergence is physi-
cally more meaningful than formal strong convergence, since
any subgrid model is phenomenological, and, hence, must be
scale-dependent.

An alternative interpretation of weak convergence is that
converged values p̂ j are the “correct” ones, but at finite res-
olution (∆r,M1) parameters may be tweaked to produce a
better converged value, i.e. Q̂ may be close to the uncon-
verged value Q(∆r,M1| P, p j) for some values of p j even if
the finite resolution value at the converged parameter values,
Q(∆r,M1| P, p̂ j), is sufficiently far from the converged value
Q̂.

2.2. Physical Convergence
Just by itself, numerical convergence does not imply the

truth. A numerically converged value may be wrong, if the
underlying physical model is wrong. Hence, one should also
consider “physical convergence” of a simulation, i.e. the sen-
sitivity of Q̂ to the adopted physical model P. Of course, it is
impossible to consider any sort of a limit for P, but one can
explore the difference between simulation results with two or
more different physical models,

δQ̂ = lim
∆r,M1→0

[Q(∆r,M1| P1) − Q(∆r,M1| P2)] .

If several sufficiently different physical models give similar
results, it seems reasonable to assign higher confidence in the
simulated values.

The physical model used in CROC simulations is fully de-
scribed in Gnedin (2014). That paper also explored in suf-
ficient detail the dependence of the star formation model on
some of its parameters, most importantly the molecular hy-
drogen depletion time τSF and the feedback model delayed
cooling time τBW. There is a degeneracy between these
two parameters (faster star formation can be compensated by
stronger feedback), but the remaining parametric freedom can
only be constrained by observational measurements.

In this paper I do not explore the variation of these two pa-
rameters any further, considering the previous study sufficient
for now. Hence, all of the results presented below are also
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TABLE 1
Mass Resolution Chart

Label M1 N particles in N particles in
10h−1 Mpc box 20h−1 Mpc box

“LR” 5.9 × 107M� 1283

“MR” 7.4 × 106M� 2563 5123

“HR” 9.2 × 105M� 5123 10243

“UR” 1.2 × 105M� 10243

subject to variation of τSF, τBW, and any other model parame-
ter not explicitly discussed here.

An important component of the star formation model that
has not yet been explored fully is the model for the forma-
tion of molecular hydrogen. In CROC simulations stars are
only allowed to form in molecular gas, hence modeling the
molecular gas is the cornerstone of the adopted star forma-
tion model. ART supports two methods for modeling molec-
ular hydrogen - (A) a highly computationally expensive, full
non-equilibrium chemical network, including H2 formation
on dust, and detailed radiative transfer of ionizing and ultra-
violet radiation with accurate account for H2 self-shielding
(Gnedin & Kravtsov 2010; Gnedin & Draine 2014), and (B) a
simplified H2 formation model based on fitting formulas from
Gnedin & Draine (2014)6 and radiative transfer of ionizing
radiation only. I will call the first physical model “Full Chem-
istry” and the second, simplified model “GD14 Fits”. It is
the second, simplified model that has been so far used in all
CROC simulations, as it would be impractical to use the “Full
Chemistry” model in large-scale, non-zoom-in simulations.

There exists, however, one serious limitation of the GD14
fitting formulas: they were calibrated on lower redshift (z ∼ 3)
simulations, and do not account for the fact that molecular hy-
drogen formation time may be long, even longer than the age
of the universe. At z ∼ 3 this is not an issue, since the age of
the universe is 2 Gyr, comparable to the molecular hydrogen
depletion time. At high redshifts, z & 10, the effect of the
finite age of the universe is, however, substantial; in particu-
lar, at z > 10 original GD14 fits would produce unphysical
global star formation rate in excess of “Full Chemistry” sim-
ulations. Hence, I introduce a correction to the GD14 model,
calling it “GD14+”. This correction is defined and validated
in Appendix B.

3. DESCRIPTION OF THE SIMULATIONS

A complete description of the physics followed in CROC
simulations is presented in Gnedin (2014) and I do not repeat
it here for the sake of brevity.

For exploring the convergence properties of CROC simula-
tions, I use 10h−1 Mpc and 20h−1 Mpc boxes, as larger simu-
lations would be too expensive for a sufficiently dense sam-
pling of numerical parameters. Simulations that use GD14
fitting formulas (i.e., prototypes for production simulations)
are run at fixed spatial resolutions, with values ∆r = 25, 50,
100, 200, and 400 pc, except for the “ultra-high” (UR) res-
olution, which would be impractical to sample fully with 5
spatial resolutions; only the lowest resolution, ∆r = 400 pc, is

6 The fitting formulas are obtained by running a wide grid of galaxy for-
mation simulations with the full non-equilibrium network.

performed for this mass resolution. This is further discussed
in § 4.2.

Because enforcing constant resolution in physical units in-
volves substantial amount of spatial smoothing, and, hence,
resolution loss, reference simulations using the “Full Chem-
istry” model are run at constant comoving resolution.

Individual simulations are labeled in the following way: a
simulation label starts with B10 or B20 for the box size and
then is followed by a two-letter identification of the simula-
tion mass resolution as shown in Table 1. The third field indi-
cates the physical model used (“FULL” for “Full Chemistry”,
“GD14” for GD14 fits, etc). The fourth field gives the spatial
resolution in parsecs (c.f. “R100” stands for ∆r = 100 pc),
if the resolution is fixed in physical units, or the maximum
level of refinement (c.f. “L7” for LMAX = 7) for simulations
with constant comoving resolution. For reference, a simula-
tion with 10h−1 Mpc, high mass resolution (5123 root grid)
and LMAX = 7 has spatial resolution in physical units of
∆r = 20(11/(1 + z)) pc.

For example, B10.HR.FULL.L7 labels a simulation in a
10h−1 Mpc box with 5123 particles, the “Full Chemistry”
model, and spatial resolution fixed in comoving units, with
LMAX = 7, while B10.MR.GD14+.R200 labels a simulation
in a 10h−1 Mpc box with 2563 particles, the “GD14+” physi-
cal model (§B), and fixed physical spatial resolution of 200 pc.

Simulations with progressively higher resolution but the
same box size (like B10.LR, B10.MR, B10.HR, etc) start with
initial conditions that preserve the same large-scale modes, so
that the same individual objects can be identified in simula-
tions with different mass resolution. I.e., initial conditions
for, say, B10.MR are obtained from the initial conditions for
B10.LR by adding small scale power between kNy(LR) and
kNy(MR) = 2 × kNy(LR), initial conditions for B10.HR are
further refined by adding small scale power between kNy(MR)
and kNy(HR) = 2×kNy(MR), etc, where kNy(...) is the Nyquist
frequency of the corresponding simulation box.

4. CONVERGING ON THE GLOBAL STAR FORMATION HISTORY

One of the most generic quantities in a cosmological simu-
lation is the globally averaged star formation rate density as a
function of cosmic time (Springel & Hernquist 2003; Schaye
et al. 2010b), often called “global star formation history”. If
a numerical simulation is not converged on the globally aver-
aged star formation rate density, little else would be converged
too. I also use this simple quantity to demonstrate in detail the
methodology used for exploring convergence.

4.1. Spatial Convergence at Fixed Mass Resolution
Figure 1 shows such a convergence study for CROC high

resolution (M1 = 9.2 × 105M�) simulations. Let’s first focus
on colored lines. They show 10h−1 Mpc box simulations at
several spatial resolutions (from ∆r = 25 pc to ∆r = 400 pc)
for the default “GD14+” model. Simulation results differ for
different spatial resolutions, so even at the resolution of ∆r =
25 pc simulations have not yet fully converged. Is it possible
to extrapolate simulation results to find the converged answer?

As the default extrapolation scheme, I adopt a Taylor series
expansion of the log of a quantity (in this case - the global star
formation rate density at a given redshift),

Q(∆r) = Q0 exp

− n∑
i=1

C j∆r j

 , (4)
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Fig. 1.— Global star formation histories for several “HR” (M1 = 9.2 ×
105M�) simulations. Various colored solid lines (from red to purple in
rainbow order) show actual simulation results with spatial resolutions of
∆r = 400, 200, 100, 50 pc, and 25 pc respectively for our default “GD14+”
model, while a solid black line gives the numerically converged history. As a
test of physical convergence, the dashed black line shows the fully converged
reference “Full Chemistry” HR run.

where Q0 is the spatially converged value,

Q0 = lim
∆r→0

Q(∆r).

With 5 numerically sampled values of Q, one can determine
Q0 and up to first 4 coefficients C j (n = 4). In practice, how-
ever, since simulation results are always somewhat noisy, it is
preferably to use a smaller number of degrees of freedom than
the number of data points, to avoid fitting numerical noise.

Since the extrapolating procedure does depend on the
adopted function form for the fitting function, I also consider
an alternative, 3-parameter power-law functional form,

Q(∆r) = Q0 exp
(
−A∆rB

)
, (5)

where Q0, A and B > 0 are fitting parameters. I also ex-
perimented with other fitting functions, including using Tay-
lor series expansion for the value itself, rather than its log
(Q(∆r) = Q0 −

∑n
i=1 C j∆r j), but these two functional forms

given above seem to capture most of variations due to adopted
parametrization.

As an example of the extrapolation technique, Figure 2
shows cuts through Fig. 1 at two representative redshift val-
ues, and results of extrapolating numerically sampled values
with functions (4) and (5), using either all 5 data points or
subsets of 4 or even 3 highest resolution points. Differences
between these various choices serve as an estimate of the un-
certainties in the extrapolation procedure, which in this case
does not exceed 10%.

Using the functional form (4) with n = 3 (n = 2 for the
“Full Chemistry model) as the fiducial one, I can now ex-
trapolate simulated results to the limit ∆r → 0 at each red-
shift, and these extrapolations are shown with black lines in
Fig. 1. Physical convergence can now be tested by comparing
the fully converged “Full Chemistry” simulations (the black
dashed line in Fig. 1) and “GD14+” runs (a black solid line).
The (level of) agreement between these three lines demon-
strates the physical convergence of the CROC simulations; it
is not, of course, achieved serendipitously, but simply the out-
come of choosing the right values for the model parameters,
Dc = 0.05, in Equation (B3). The agreement is very good at
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Fig. 2.— Extrapolations of the simulated results at z = 7 and z = 10 to
the numerically converged values along the spatial resolution axis. Black cir-
cles trace numerical results at the particular redshift, while lines show various
extrapolations (see text for more details). Colors (red, green, and blue) cor-
respond to cases when 5, 4, and 3 highest resolution data points are used for
extrapolation. A numerically converged result (extrapolation to ∆r → 0) can
be determined to about 10% precision. The two panels are the same figure
with logarithmic and linear horizontal axes (the log-scaled plot is easier to
see, but the actual amount of interpolation to ∆r → 0 required is clearer in
the linear space).

high redshifts, but deteriorates to about 20% after z ≈ 10. One
cannot say a priori which of the two solutions is the “right”
one; while the “Full Chemistry” model includes more physics,
it also takes the “blastwave” feedback model into the resolu-
tion limit where it is not supposed to work well. Hence, the
difference between the black lines in Fig. 1 should, at present,
be treated as an estimate of the theoretical error due to the
assumed H2 formation model (and there must be other theo-
retical errors on top of this due to other physical assumptions).

The interpretation of this figure is as follows. It demon-
strates that simulations with a finite spatial resolution ∆r > 0
do have a convergence limit ∆r → 0; the limit is slightly de-
pendent on the adopted extrapolating function, but is robust
to within about 10%, which can be treated as a “systematic
error” of the numerically converged result. This numerically
converged limit can be tuned to be within the 20% variation
from the ”Full Chemistry” model, thus allowing one to use a
simplified, ”GD14+” model for molecular hydrogen forma-
tion as a reasonable approximation to a full non-equilibrium
calculation.



5

104 105 106 107 108

M1 [M¯]

10-5

10-4

10-3

10-2

ρ̇
∗(
M

1
)[
M

¯
/y

r/
M

p
c3

]

z=10

z=7

Q=Q0 exp(−A MB
1 )

Q=Q0 exp(−A M1 ), 2 points
Q=Q0 exp(−A M1−B M 2

1 )

0 107

M1 [M¯]

10-5

10-4

10-3

10-2

ρ̇
∗(
M

1
)[
M

¯
/y

r/
M

p
c3

]

z=10

z=7

Q=Q0 exp(−A MB
1 )

Q=Q0 exp(−A M1 ), 2 points
Q=Q0 exp(−A M1−B M 2

1 )

Fig. 3.— Extrapolations of the simulated results at z = 7 and z = 10 to the
numerically converged values along the mass resolution axis. Black circles
trace numerical results at the particular redshift, while lines show various
extrapolations (see text for more details). Colors (red and blue) correspond to
cases when 4 and 3 highest resolution data points are used for extrapolation.
A numerically converged result (extrapolation to M1 → 0) can be determined
to about 20% precision. The two panels are the same figure with logarithmic
and linear horizontal axes (the log-scaled plot is easier to see, but the actual
amount of interpolation to M1 → 0 required is clearer in the linear space).

4.2. Mass Convergence at Fixed Spatial Resolution
A similar procedure can be used to explore mass conver-

gence. For a technical reason, the ART code requires the size
of the root grid to be a power of two, so the mass resolu-
tion can, at present, be only sampled in factors of 8. That
limits the number of samples we can have in most cases to
just 3 (LR, MR, and HR). It is hard to estimate the robust-
ness of the extrapolation procedure with just 3 samples, so
one additional simulation with “ultra-high” (UR) resolution
(M1 = 1.2× 105M�) has been completed. At such an extreme
mass resolution, it is only practical to run at the lowest spa-
tial resolution, ∆r = 400 pc. Hence, a small corner of the full
resolution sample grid (M1 = 1.2 × 105M�, ∆r ≤ 200 pc) re-
mains unexplored in this work. It can be filled in the future,
as computing power increases even further.

Figure 3 serves as a direct analog of Fig. 2, but now showing
the extrapolation along the mass direction. Because the num-
ber of data samples is less than in the spatial extrapolation
case, the variation between various extrapolating functional
forms is greater. In the mass direction the converged value is
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Fig. 4.— Fully (i.e. spatially and mass) converged global star formation
histories for CROC simulations. Red lines show the sequence of mass-
converged values, non-solid lines tracking three fixed spatial resolution (out
of total 5), while the red solid line is the limit M1 → 0,∆r → 0. Blue
lines show the opposite approach, with the blue solid line tracing the limit
∆r → 0,M1 → 0. Solid blue and red lines coincide, demonstrating the sta-
bility of extrapolation.

only good to about 20%, but that is sufficient at present, since
the physical convergence is only good to at most that level.

4.3. Full Numerical Convergence
Having determined the spatially converged results along

spatial or mass direction, one can now undertake the full limit
∆r → 0,M1 → 0 or M1 → 0,∆r → 0. The results of such
double extrapolation are plotted in Figure 4, with the two lim-
its coinciding almost perfectly. This is, of course, fully ex-
pected, as the order of taking the limits in ∆r and M1 should
not matter. The agreement, however, is not completely triv-
ial, since extrapolations along both spatial and mass direc-
tions require fitting functions to noisy data; if the fits become
unstable, the two limits would not agree. The actual agree-
ment between them indicates the stability of the extrapolated
values.

5. WEAK NUMERICAL CONVERGENCE ON GALACTIC
PROPERTIES

While finding the fully converged result is important, it is
not practical to strive for strong convergence in production
runs. Computing the solid line in Fig. 4 requires producing 16
separate simulations (of which highest mass resolution runs
dominate the total computational expense). The ultimate goal
of a convergence study is, then, to achieve weak convergence -
i.e., to find combinations of simulation parameters that allow
to reproduce the fully converged result in simulations with
finite spatial and mass resolutions.

In addition, converging just on the global star formation his-
tory is not enough, since reproducing the global history does
not guarantee that the detailed morphology of reionization or
internal properties of galaxies are reproduced. Among these
properties the most important for modeling reionization is star
formation histories of individual galactic halos. Indeed, sim-
ulations with various mass and spatial resolution are expected
to converge well on the distribution of sufficiently massive
galactic halos, since modern N-body simulations are highly
robust (Kim et al. 2014). Hence, as long as the mass resolu-
tion of a simulation is enough to resolve galaxies with halo
masses Mh & 108M� that produce almost all ionizing pho-
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finite resolution runs (red and blue dashed lines). Note that while the global
SFR history is approximately matched by the finite resolution simulations
(values of ρ̇∗ at Mh → 0 as a function of redshift), the detailed star formation
rates in halos of different masses are significantly off. Different redshifts are
shifted vertically for clarity.

tons (Gnedin & Kaurov 2014), one can attempt to construct a
weakly converged model that will recover star formation his-
tories of individual galactic halos and, hence, will reproduce
the detailed reionization morphology of a fully converged so-
lution.

Figure 5 illustrates this point with an example of two finite
resolution simulations. It shows a fraction of the global star
formation rate density contributed to by galactic halos of a
given mass, in a cumulative distribution, because in that case
the value of ρ̇∗ at Mh → 0 is simply the global star formation
history (i.e. asymptotic values of black lines at Mh → 0 are
simply values of solid lines in Fig. 4 at these redshifts).

Black solid lines show the fully converged (M1 → 0,
∆r → 0) solutions, obtained with the methodology described
in the previous section, and color lines give two typical fi-
nite resolution simulations, whose star formation efficiencies
(SFE) are adjusted to match the global SFR history at z = 6
(i.e. the agreement between all 3 lines for Mh → 0 at z = 6
is by construction). While the global SFR histories for the
latter are within ∼ 25% of the fully converged solution at all
times, the overall shape of the distribution is not captured by
the finite resolution simulations.

In order to fix this deviation, I introduce in the star for-
mation recipe a multiplicative ”weak convergence correction
factor” W,

ρ̇∗ = W × ρ̇(orig)
∗ ,

where ρ̇(orig)
∗ is the value of the star formation rate at a given

location produces by the original, without the correcting fac-
tor, simulation recipe. Ideally, one would introduce a correc-
tion factor that depends on the halo mass - in that case it can
simple be computed as the ratio of black and colored lines
from Fig. 5. However, in practice that would require track-
ing halos as the simulation evolves, and would also introduce
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Fig. 6.— Cumulative star formation rate density as a function of halo mass
at several redshifts for the fully converged result (solid black lines) and four
weakly converged finite resolution simulations. With the weak convergence
correction the finite resolution simulations recover the whole shape of ρ̇∗(>
Mh) at all halo masses with an acceptable (∼ 20%) precision. The insert
shows the ratios of ρ̇∗(Mh → 0) from four weakly converged simulations
and the fully converged solution, which is the precision with which weakly
converged simulations recover the total star formation rate and, hence, the
global ionizing budget.

ambiguity during merger events. In addition, it would be a
non-local modification of the star formation recipe. In order
to avoid these purely technical, but still formidable complica-
tions, I introduce a weak convergence correction factor W(nH)
that is a function of the total gas hydrogen density nH only. It
is, obviously, just a choice, and other forms of the conversion
factor can be also designed. Hence, the weak convergence
correction factor is not unique; even if two different forms of
W provide similar level of convergence for some particular
galactic property, like ρ̇∗(> Mh), they may result in different
degree of convergence for some other galactic properties. It is
unclear, however, how one would approach finding an ”opti-
mal” convergence factor.

Hence, to be specific, I choose the following form for
W(nH),

W(nH|q<, q>, nc) =
q< + q>(nH/nc)

1 + (nH/nc)
, (6)

where q<, q>, and nc are parameters. Extensive parameter
search results in the following weak convergence correction
factors for “High Resolution” (M1 = 9.2 × 105M�) runs,

WHR(nH) ≡ W(nH|3, 1, 10 cm−3), (7)

and “Medium Resolution” (M1 = 7.4 × 106M�) runs,

WMR(nH) ≡ W(nH|3, 0.3, 10 cm−3). (8)

Both factors enhance star formation in low mass halos; the
“Medium Resolution” form also reduces star formation rate in
highest density regions, to force a larger variation in ρ̇∗(> Mh)
with the halo mass. The actual values of the parameters q<,
q>, and nc are rather robust; nc can be varied between 3 cm−3

and 30 cm−3 with little change, and q< and q> can also be
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Fig. 7.— Cumulative star formation rate density as a function of halo mass
at several redshifts for the fully converged result (solid black lines) and three
weakly converged finite resolution simulations in 20h−1 Mpc boxes (two
“Medium Resolution” sets with 100 pc and 200 pc spatial resolution and a sin-
gle “High Resolution” run with 100 pc spatial resolution). A semi-transparent
band shows the error in the mean computed from 6 random realizations.

varied by up to 50%.
Figure 6 now shows ρ̇∗(> Mh) vs Mh for four weakly con-

verged simulations, “High Resolution” and “Medium Reso-
lution” runs with 100 pc and 200 pc (with the appropriate ad-
justment in the SFE7). The overall shapes are now reproduced
at an acceptable level of precision, and the global star forma-
tion history (aka the total ionizing budget) are also recovered
to within 10% for 100 pc runs and within 20% for 200 pc sim-
ulations.

While my primary focus in this paper are spatial and mass
resolution, the simulation box size is also an important nu-
merical parameter. In Figure 7 I show weak convergence
for several simulations in 20h−1 Mpc boxes (as compared to
10h−1 Mpc for all the runs presented above): two “Medium
Resolution” (5123) simulation sets with 100 pc and 200 pc
spatial resolution and a single “High Resolution” (10243)
run with 100 pc spatial resolution. Each “Medium Resolu-
tion” box was simulated 6 times in independent realizations
of initial conditions (similar to runs B20.sf1.uv2.bw10 from
Gnedin 2014), and the figure shows the average over all 6 re-
alizations and its error (for the 200 pc case; the error for the
100 pc is essentially identical). Simulations with twice larger
box sizes achieve a similar level of weak convergence irre-
spectively of their spatial or mass resolution, illustrating the
approximate independence of the accuracy of weak conver-
gence from the box size.

Since weak convergence correction factors are tuned to re-
cover the fully converged solution specifically for ρ̇∗(> Mh),
independent tests of the quality of these modified runs can be

7 Remember, that the SFE (quantified by the gas depletion time τSF) is
a free parameter of these simulations, to be fixed by matching some data -
for example, the observed galaxy UV luminosity functions. Hence, in this
paper I am primary concerned with the relative star formation rates in various
runs, with the absolute scale to be determined later, after the fully converged
solution is compared to the observations.

obtained by comparing numeric convergence for other galac-
tic properties - since the factors W are fully fixed in these runs,
all other galactic properties are uniquely predicted in the sim-
ulations.

In Figure 8 I show three other galactic properties for the
fully converged solution and four weakly converged simula-
tions discussed above. A decent level of convergence for stel-
lar masses and metallicities is not surprising, since converg-
ing on full star formation histories of individual galactic halos
effectively guarantees that most of stellar properties are well
converged as well. However, a given star formation history
does not constraint many other galactic properties, for exam-
ple, atomic hydrogen fraction. As the right panel of Fig. 8,
this quantity is converged much worse, at the level of a factor
of 2 only. Hence, the weakly converged simulations should be
used with care when making predictions for, for example, 21
cm emission - they will predict correctly the emission from
the large-scale distribution of ionized bubbles (since star for-
mation rates and, hence, ionizing luminosities of individual
galactic halos are recovered), but will overestimate the addi-
tional contribution from galaxies themselves, which can be
important at ∼ 25 − 50% level (Kaurov & Gnedin 2015).

An alternative, and likely a better approach (suggested by
the referee) could be to modify the actual gas density that en-
ters star formation model and radiative transfer solver (but not
the hydro solver, which needs to remain strictly conservative).
It may be possible then with a single factor to achieve weak
convergence in several simulated quantities, such as star for-
mation rates, metallicities, HI masses, and even the interstel-
lar radiation field. Finding such a universal correction will be,
though, a significant effort.

6. CONCLUSIONS

Because numerical simulations offer the most accurate and
realistic theoretical models of reionization at present, evalu-
ating their precision is an important theoretical task. Results
from computer simulations can be considered as solutions to
actual physical equations only if they are numerically con-
verged. In practice, however, it is often exceptionally difficult
or even plainly impossible to reach ”strong” convergence -
i.e., the effective independence of simulation results of spatial
and mass resolution (see eq. 2) - and one has to seek instead
”weak” convergence. With weak convergence the simulated
physical model at finite spatial and mass resolution is adjusted
as the resolution changes (eq. 3). One can consider such an
adjustment as tuning a finite resolution simulation to repro-
duce the results of the fully converged solution, a completely
legitimate and sensible approach to take.

In this paper I show that simulations of reionization
performed under the Cosmic Reionization On Computers
(CROC) project do converge in space and mass, albeit slower
than one hoped for. A fully converged solution can be ob-
tained at a level of about 20% precision, and which is also in-
dependent of the adopted model for molecular hydrogen for-
mation. While this can be considered an important achieve-
ment, it is useless in practice, since populating the grid of
various resolution values for production grade simulation,
needed for accurate extrapolation to formally infinite resolu-
tion, would require an insane amount of computational time.

In order to make progress in the interim, before such large
computer allocations become possible, I introduce a weak
convergence correction factor in the star formation recipe,
which allows to approximate the fully converged solution
with finite resolution simulations. The accuracy of weakly
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Fig. 8.— Tests of numerical convergence for M∗ vs MH , Z∗ vs Mh, and MHI vs Mh for the weakly converged runs shown in Fig. 6. A good level of convergence
for M∗ and Z∗ is not that surprising, since converging on full star formation histories of individual galactic halos effectively guarantees that. Agreement with
atomic gas fractions - a truly independent test - comes out significantly worse.
converged simulations approaches a comparable, ∼ 20% level
of precision for star formation histories of individual galac-
tic halos and other galactic properties that are directly related
to star formation rates, like stellar masses and metallicities.
Yet other properties of model galaxies, for example, their HI
masses, are recovered in the weakly converged runs to only a
factor of two.

Overall, the weakly converged solutions will serve as rea-
sonable interim theoretical counterparts for the first obser-
vational data from JWST, until more expensive, better con-

verged simulations become available.

I am grateful to the anonymous referee for insightful com-
ments and an important suggestion for the future improve-
ment of the current work. Simulations used in this work
have been performed on the Joint Fermilab - KICP cluster
“Fulla” at Fermilab, on the University of Chicago Research
Computing Center cluster “Midway”, and on National Energy
Research Supercomputing Center (NERSC) supercomputers
“Hopper” and “Edison”.

APPENDIX

IMPLEMENTATION OF FIXED PROPER RESOLUTION IN THE ART CODE

Grid codes (including AMR) commonly maintain spatial resolution fixed in comoving coordinates, while SPH codes often hold
resolution fixed in proper coordinates. The latter is a desirable property, since most subgrid physical models work well over a
limited range of spatial scales. Hence, in a grid simulation the proper resolution may, with time, redshift away from the preferred
range. A simple, approximate implementation of fixed proper resolution in an AMR code has been recently presented by Roškar
et al. (2014). In their scheme a new refinement level is added every time the proper resolution redshifts too much away from a
preset value.

A Roškar et al. (2014) approach is very simple, but it has one undesirable feature: as a new AMR level is added, the actual
spatial resolution of the simulation jumps by a factor of 2. Since the new level was held back artificially, a large fraction of the
parent level would have been refined were that level active; as the new level is released, a significant fraction of cells on the
parent level gets refined to the new level on a very short time scale (free-fall time-scale of the new level). Because, as we have
shown above, CROC simulations do not achieve strong convergence in spatial resolution, such a jump in resolution creates a
comparable jump in the global star formation rate. Such a “universe-quake” behavior is, obviously, totally unphysical and even
violates causality.

In order to avoid unphysical behavior, a different scheme is implemented in the ART code that includes several components.

Slow down, but not suppress refinement below ∆r.: No refinement level is held back artificially, but the refinement criterion is
modified so that on any level L below the fixed proper resolution ∆r the dark matter and/or gas mass in a cell required for
refinement to a higher level L + 1 is increased by a factor (∆xL/∆r)3, so that only the densest cells would refine below the
fixed proper resolution.

Smooth the source term for the Poisson equation.: The total density that sources the Poisson equation is smoothed on a scale
comparable to ∆r. Namely, for a given value of ∆r two neighboring refinement levels Ld and Lu = Ld + 1 are found such
that ∆xLu ≤ ∆r and ∆xLd > ∆r. Then the density on level Lu that is used in the Poisson equation is computed as

ρ̃Lu = (1 − w)ρLu + wρLd

with w = log2(∆r/∆xLu ) and ρL being the actual total density on the refinement level L. On all levels L ≤ Ld the actual
total density ρL is used in the Poission equation, and for all levels L > Lu the density of the parent cell at level Lu is used in
the Poission equation. This procedure is not precisely a convolution with a given window function, but it is (a) linear and
(b) gives ρ̃L = ρL for ∆r = ∆xL, so it serves as a smoothing procedure for ρ̃.

Maintain pressure floor consistently with gravity.: The pressure floor that prevents numerical fragmentation in the gas is main-
tained so that the local Jeans length is always resolved with at least 4∆r.



9

10-1 100 101

r(kpc)

101

102

103

104

105

106

107
ρ
/ρ̄

z=5

Mh ∈[1,3]×1011 M¯

Mh ∈[1,3]×1010 M¯
∆r=100pc
∆r=200pc
∆r=400pc

10-1 100 101

r(kpc)

101

102

103

104

105

106

107

ρ
/ρ̄

z=7

Mh ∈[1,3]×1011 M¯

Mh ∈[1,3]×1010 M¯
∆r=100pc
∆r=200pc
∆r=400pc

Fig. 9.— Average dark matter density profiles for halos (in proper distance coordinates) in two mass bins and for three spatial resolutions in B10.HR simulations.
Vertical dotted lines show radii of 200 pc, 400 pc, and 800 pc - a run with ∆r = 200 pc has the real spatial resolution about twice worse. Two panels show z = 5
and z = 7 to demonstrate that the spatial resolution is indeed reasonably redshift independent.

Average density profiles in halo mass bins for two test simulations with ∆r = 100 pc, ∆r = 200 pc, and ∆r = 400 pc are shown
in Figure 9. As one can see, the real resolution of the simulations is about 2 × ∆r, as could be expected for a grid code, and the
resolution is essentially the same at two different redshifts, i.e. it remains constant in proper coordinates.

MOLECULAR HYDROGEN FORMATION MODEL

The target spatial resolution for CROC simulations is 100 − 200 pc, and a detailed chemical model for molecular hydrogen
formation would not work at such resolution (Gnedin & Kravtsov 2011). Instead, it is appropriate to use the fitting formulas of
Gnedin & Draine (2014) (GD14) that are specifically designed to work on scales of several hundred parsecs.

There exists, however, one serious limitation of the GD14 fitting formulas: they were calibrated on lower redshift simulations,
and do not account for the fact that molecular hydrogen formation time may be long, even longer than the age of the universe.
At z ∼ 3 this is not an issue, since the age of the universe is 2 Gyr, comparable to the molecular hydrogen depletion time. At
high redshifts, z & 10, the effect of the finite age of the universe is, however, substantial. This is illustrated in Figure 10, which
compares a reference, “Full Chemistry” simulation (run B10.HR.FULL.L7) with a test simulation with the same mass resolution
(“HR”), but implementing the original GD14 fits as a model for molecular hydrogen abundance (run B10.HR.GD14.R100). At
z & 11, GD14 fits predict star formation rates (and, hence, molecular hydrogen abundance) in excess of the “Full Chemistry”
model. Since the “Full Chemistry” solves the actual time-dependent chemical network of reactions, it properly accounts for
the time available for molecular hydrogen formation in low dust abundance or low density environments. Hence, the high star
formation rate returned by the GD14 test simulation is unphysical.

In order to correct this unphysical behavior, I modify the original GD14 fits as follows. The molecular hydrogen fraction in the
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Fig. 10.— Global star formation histories of several test “HR” (M1 = 9.2 × 105M�) simulations. A black line shows the reference “Full Chemistry” HR run
with 7 levels of refinement (run B10.HR.FULL.L7). A red line presents the simulation that implements the original GD14 fits as a molecular hydrogen formation
model with 100 pc resolution (run B10.HR.GD14.R100). Large excess of the GD14 model over the reference model at z & 11 is a manifestation of the failure of
GD14 fits at early times. A blue line shows the corrected “GD14+” model that eliminates the unphysical behavior (run B10.HR.GD14+.R100).
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show the original GD14 fits and the modified GD14+ model from Equation (B3).

gas is computed as

fH2 =
R̃

1 + R̃
, (B1)

where R̃ is the ratio of the molecular to atomic gas, and is parametrized as

R̃ =
q

1 + q
R, (B2)

where R is given by unmodified GD14 fits, their Eqs. (8-10). In the limit q → ∞, this modified, “GD14+” fit reduces to the
original GD14 fitting formula.

There is no rigorous way to compute the correction factor q (short of running a “Full Chemistry” simulation), so it has to be
implemented with a model. The average rate of formation of molecular hydrogen in a simulation cell is

ṅH2

nH2

= 3.5 × 10−17 cm3/s × DMWnHCd,

where DMW is the dust-to-gas ratio in the Milky Way units (i.e., in the solar neighborhood DMW = 1) and Cd is the clumping
factor that accounts for the numerically unresolved density stricture on small scales (since formation of H2 is a two-body process
- fuller details, including equations, are given in Gnedin & Kravtsov 2011; Gnedin & Draine 2014). A plausible ansatz for the
suppression factor q is

q ∼
ṅH2

nH2

τc,

where τc is some time scale. From general consideration, it is hard to guess what it should be. For example, it can be proportional
to the age of the universe, in which case q scales as DnH; it can also be proportional to the free-fall time tff , in which case q scales
as Dn1/2

H ; it can also scale with density as the cooling time, τc ∝ 1/nH, in which case q scales as D with no density dependence.
In order to explore this choices, I use the ”Full Chemistry” run B10.HR.FULL.L7 and apply GD14 fitting formula to the actual

simulated data, averaged over less refined levels (thus, mimicking lower resolution). Such a comparison is shown in the left panel
of Figure 11 (it can be directly compared to Fig. 5 of GD14). The agreement between the actual calculation and the GD14 fitting
formula is not nearly as good as in the GD14 paper, and that is the manifestation of the finite value of τc. I explored all three
possible ansatzes for the q factor discussed above (q ∝ DnαH with α = 0, 1/2, and 1), and the best result is obtained for α = 0
case. In that case the factor q can be parametrized as

q =

(
D
Dc

)1/2

, (B3)
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with

Dc = 0.05
(

1 + z
10

)3

. (B4)

Comparison between the exact calculation and the fit for this case is shown in the right panel of Fig. 11. This particular ansatz
has several desirable features: for example, the redshift dependence of Dc eliminates the redshift dependence in the right panel
of Fig. 11. In addition, at low redshifts (z . 5) the factor Dc becomes very small, and the modified model reduces to the original
GD14 fits.

I, therefore, adopt ansatz (B3) as my molecular hydrogen formation model, and label it ”GD14+” to underscore a small but
important correction to the original GD14 fit. A corresponding test simulation (run B10.HR.GD14+.R100) is shown in Fig. 10
with a blue line. As one can see, the unphysical behavior is now eliminated.
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